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The SAIN approximation scheme introduced by Deutsch and Morris [1-3]
may be stated as follows: ’

SAIN APPROXIMATION SCHEME. Suppose M is a dense subset of a normed
linear space X and {x1*,..., x,*} is a finite subset of the dual X* of X. Given
x € X, approximate it by an m € M for which x;*m = x;*x (i = 1,..., n) and
[mil = x].

The SAIN approximation problem is to determine what n-tuples of linear
functionals x,*,..., x,,* will be such that any x € X may be approximated
arbitrarily closely by an m e M under the SAIN approximation scheme.
Equivalently, for what n-tuples of linear functionals does a Weierstrass
theorem hold for the SAIN approximation scheme?

Several authors have contributed to solving the SAIN approximation
problem, both in abstract and concrete spaces (e.g., [5, 6, 8-10, 12]). We
consider the SAIN approximation problem in the concrete space of all
continuous functions on a compact interval, where we take the dense subset M
of Cla, b] to be the polynomials I1. The result obtained can be generalized
to some other dense subspaces M of Cla, b}, some cases of which will be
given below.

Even though the proof below is more complex, the characterization
obtained for the solution of the SAIN approximation problem is as simple
as that of the related OSAS approximation problem dealt with by the author
[7] earlier. The compendium of the results below is stated in Theorem 2,
located at the end of Section 3.
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1. PRELIMINARIES

In their fundamental paper [2], Deutsch and Morris observed that one
obtained an affirmative answer to the SAIN approximation problem on
C(T), T compact Hausdorff, whenever M was a dense subalgebra of C(7)
and the linear functional side conditions were all point evaluations. We
rephrase their result as Proposition A below. Though most recent work on
the SAIN approximation problem has not dealt directly with function spaces,
one exception is an interesting result obtained by Lambert [9] which we give
as Proposition C.

The goal of this paper is to study the SAIN approximation problem for
the special case of T being a compact interval and M the polynomials. The
characterizations obtained are useful and easy to apply in concrete problems.

Iemma A [11,4). If x*is a bounded linear functional on C(T), T compact
Hausdorff, then there exist positive linear functionals u*, v* on C(T) such that

x* =¥ —o% [ xF = et oL

Furthermore the u*, v* are uniquely defined by the x*.

Lemma B [11,4]. If x*is a [ positive] linear functional on C(T), then there
exists a finite [ positive] Borel measure . such that

u*(f) = ffd,u (fe C(T)).

We recall that by the support of a bounded linear functional x* we mean
the support of the finite Borel measure p representing x*.

DeriniTioN 1. We say that a linear functional x* has finitely atomic
support (is purely finitely atomic) in case the associated Borel measure is
(i) purely atomic, and (ii) has at most a finite number of atoms.

ProposiTION A [2]. Suppose M is a dense subalgebra of C(T), T compact
Hausdorff. If x,*,..., x,* each have finitely atomic support, then given e C(T)
and € > 0 arbitrary there is an me M such that X m=x5({i=1..,n),
fmll =1 fl, and || f—m]| <e.

Levmma C [4)  Suppose X is a normed linear space, {c,..., c,} arbitrary
sealars, {x;%,..., x,*} a finite subset of the dual X*, and A > 0. Then for any
€ > 0, there exists an x € X such that

x*x=¢; (=1l.,n) and x| <A+e (0

640/17/1-2
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if and only if

‘ Z x;C;
SJor all o = (o ..., a,) €R™

At times a slightly stronger result is desired than Lemma C, which we can
get using Yamabe’s theorem [13]:

<A H Z o *

| @

Lemma D (Yamabe’s theorem). Suppose M is a dense convex subset of a
normed linear space X. For x;*,...,x,* € X* € > 0, and x € X there is an
me M such that x,*m = x,*x (i = 1., m)and || x — m| < e

LemMmA E. If M is a dense subspace of X, under the hypotheses of Lemma C
there exists an m € M such that

xFm=c¢; (=1,.,n) and ||m| <A+ e 3)

if and only if (2) holds.

ProposITION B [6]. Suppose M is a dense subspace of a normed linear
space X. If x.*,..., x,* € X* and x € X\M are such that there exists an me M
such that

x*m = x;*x (= 1,.,n and lmj <|lx|
then given € > 0 arbitrary there is an r € M such that

x*r = x;%x (i=1,.,n),
il <lixll  and  [[x—r| <e

ProposiTiION C [9]. Suppose fe C(T), T compact Hausdorff. If | attains
its norm at most finitely often on T, then given any linear functionals x;*,..., x,*
on C(T), any € > 0 and any dense subalgebra M of C(T), there existsanme M
such that

x;*m = x;5f (i=1,.,n),

[ml =1/l and |f—ml]<e

4)

Current terminology is to say that the triple (C(T), M, {x,%,..., x,*})
has property SAIN if and only if the conclusion (4) above holds for some
m = m(e) € M, for any € > 0 and fe C(T) arbitrary.

DrrmniTIoN 2. Suppose X is a normed linear space, and M a dense subset
of X. A linear functional x* € X* is said to be a SAIN functional in case the
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triple (X, M, x*) has property SAIN. A finite sequence x;*,..., x,* is said
to be a SAIN sequence in case every x € (x;* ,..., x,*» is a SAIN functional,
where {x;*,..., x,*> is the linear span of x,*,..., x,,*.

Remark 1. A necessary condition that a triple (X, M, {x,*,..., x,*}) have
property SAIN holding is that the sequence x;%,..., x,,* be a SAIN sequence.
We investigate the converse of this statement below.

We will use the notation ¢ to denote the cone of positive linear functionals
defined on a function space. supp x* will designate the support of the
functional x*. We will also designate the u*[p*] of Lemma A by x** or
{x*)* [x~* or (x*)~] and call it the positive (resp. negative) part of x*.
xs will denote the characteristic function of the subset B of {2, 5]. The norm
used in Euclidean space R” will be /;-norm:

ety 5erer )| = i Loy

DeriniTioN 3. If x€ X and x* € X*, x* is said to be nonextremal with
respect to x in case | x*x | <[ x* |||l x||. A finite sequence x;*...., x,,* of
linear functionals is said to be nomnextremal with respect to x in case every
nonzero x* e (x;*,..., x,*> is nonextremal with respect to x. A sequence
x1%,..., x,* 1s said to be nonextremal in case it is nonextremal with respect to
every nonzero x € X.

Lemma 1. If x,*,..., x,* are linearly independent linear functionals non-
extremal with respect to an x € X, then given € > 0 arbitrary thereisanme M
such that

x;¥m = x;%x (i=1,.,n),
imi| <lxi —and | x—mi <e¢

whenever M is a dense subspace of the normed linear space X.

Proof. Let S = {x*e{x;*..., x,*>;| x*| = 1}. Then the expression

L1/ x> LS %)

is a continuous function of x* € 8, and stricted bounded above by 1 for every
x* € 8. But S is compact, so (5) must attain its supremum. Hence there is a
0 << A < Tsuchthat | x*f| << A[ x* ||| fI| holds for all x* & {x;*%,..., x,*>\{C}.
The conclusion now follows from Lemma E and Proposition B. §

COROLLARY 1. If M is a dense subspace of a normad linear space X and
%1%, X, ¥ is a nonextremal SAIN sequence om X, then the triple
(X, M, {x;%,..., x,*}) has property SAIN.
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We recall that to show property SAIN holds foratriple (X, M, {x;*,..., x,*}),
it suffices [2] to show that given ¢ > 0 and f'e X arbitrary that there exists a
peM for which x;*p = x*f (i = L..,n), |[pl <|[fl| and [[f—p| < e
We use x* o y, to denote the restriction of x* to C[4], i.e., (x* o x )(f) =
x*(x4f) for any fe Cla, b). ‘

2. Cla, b] anp IT: SUFFICIENCY

Lemma 2. If[a, blis a compact interval and x* a bounded linear functional
on Cla, b], then x* is a SAIN functional (with respect fo X = Cla, b] and
M = II)if and only if either

(i) x* has finitely atomic support, or
(i) x*e +Z and supp x* = [q, b), or
(ili) supp x* N supp x~* # @.

Proof. 1f neither (i), (ii), nor (iii) hold, necessarily x* = xt* — x—*
with supp x*+* disjoint from supp x-*. By Urysohn’s lemma we may con-
struct a continuous function g on [a, b] so that g{(x) = 1 on supp x+t*, —1 on
supp x~*, and ] g(x)] << 1 otherwise. If pell is such that x*p = x*g,
necessarily x*¥p = xt*g and x~*p = x~*g. At most one of x**, x—* may
be purely finitely atomic and neither has support all of [a, b]. Suppose that
xt* is neither purely finitely atomic nor the zero linear functional on Cfa, b].
But then any p € IT such that x+*p = xt*g = || x** || must be one on a set
of positive measure, whence necessarily identically one on [a, b]. If
supp x* # &,| g — pll = 2 and done. Thus we may suppose supp x~* = &.
Since supp xt* £ [a, b], let f€[a, b]\supp x** and define a continuous
ke Cla, b] so that £ =1 on supp x+*, —1 at ¢, and so that | A(x)] <1
elsewhere on [a, b]. Then as above any p €[l such that x+*p = x™*h =
I x** || must be one on a set of positive measure, and so || p — A] = 2.

Conversely, (i) is a special case of Proposition A, while (ii) and (iii) are a
special case of Proposition B, for if (ii), | x*f] = || x*| if and only if
f=1ell and if (iii), x* does not attain its norm on Cla, b]. |

Lemma 3. Suppose x:*,..., x,* is a SAIN sequence in Cla, b]. Then there
are at most finitely many 1 € [a, b] such that e;, x%,..., x,* is not a SAIN
sequence in Cla, bl, where e, is point evaluation at ¢.

Proof. By induction. By Lemma 2, an x* is not a SAIN functional if and
only if supp x* = [a, b], supp x** N supp x* = @, and x* does not have
purely finitely atomic support. Suppose n = 1. If x* e {e;, x,*> is not a
SAIN functional, necessarily x* = e, + £x;* for some ¢ € R. If supp x;* =
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ia, b], so is supp x*, and if x,* is purely finitely atomic so is x*. Hence
suppose that supp xi* N supp x7* #% @. In order for x* not to be a SAIN
functional it is necessary that supp xt* N supp x~* = &, whence clearly
we must have supp x7* N supp x1* = {¢}, a singleton set. Thus if n = 1,
at most one ¢ € [a, b] may exist so that ¢, , x, * is not a SAIN sequence.
Suppose valid for n = k. In order that an x* € (e, , x,%,..., x;5;> not to be
a SAIN linear functional, except for finitely many ¢ € [a, b], necessarily
x* = Eep + Ex* 4 o+ Epaxta, no & = 0. Since x ¥, xf, is a
SAIN sequence, in order for x* not to be a SAIN functional it is necessary
that {t} = supp(§pn* + - EppaXi )t N osupp(§px™ + o+ EaXi)
and that 7 is an atom of &x,* + -+ 4 £,.ux5 ;. We therefore consider
functionals of the form xj; -+ y* y*edlx*.., x,*>. Suppose #;, ts....
in [g, b} and y,*, y,%,... in {(x(%,..., x,*> are such that supp(xf; + »*)™ N
supp(xf 1 N 11 ¥~ = {tz}, supp(xi 1 + 12 ¥)" Nsupp(xfy + 1% = {&h--
and that moreover ¢, is an atom of x5, + y;*, t,is an atom of xi,; + »,*, etc.
Since dim{x;*,..., x;*> = k < + o0, at most k of the y;*, y,*,... are linearly
independent; suppose y;*,..., y* are. Suppose yi.1 = o y* -+ o ooy
At least one of the coefflcients «; is not zero; suppose oy # 0. Since

X T Vi = X = o 0 F e ® o 4 oy is such that supp(xg s +
V)T O supp(xi s + Vi)™ == {tx1), either ., is some 7, ..., 7, or else none
of the ¢, ,..., ; is an atom of xj; + oy y,* + - - oy p*. But each #; is an
atom of x5+ y;* whence necessarily each 7, is also an atom of
g ¥ A (o — Dy - o o p®, and in fact necessarily of
oy ¥+ =y v ooy yia o - g v, and hence of at least one

of the y;*, [ + j, which has a nonzero coefficient «; . On the other hand 7,
is an atom of X}y + oq ™ + =+ + ap ¥, $0 #44q is an atom of either xi;
or some y;*. If t,., is an atom of x§_, then #,,, not being an atom of
Xy -y for every j = 1,..., k implies that #,.; has to be an atom of
every y;*. Hence 1, is an atom of some y,*. By the pigeon-hole principle,
two of the ..., #;.1 have to be atoms of the same y,*, for some i = 1,..., k.
Suppose 1, , 1., are atoms of y;*. Then xi; + y* not having #,,; as an
atom implies #;,,; must be an atom of x},; , and hence of every y,;*,i = 1,..., k.
Similarly, for every u > k -+ 1, #, must be an atom of x},,, and hence of
every v, *, i = 1,..., k. Thus, we may decompose x* as

x¥= Y e, -wk f,#£0 forall p=k+1,
u=k+1

where w* does not have any of the £, , #;.5 ,... as atoms. Similarly, we must
have, foreachi = 1,..., k - 1,

yi*¥ =3 pises, + 2% pi.#0 for all g,

u=k+1
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and in fact necessarily p;, = ¥, for every p and 7, where none of the
tit1 s Tirs se-- 18 an atom of z;*. But then

k
* %
yk+1 - Z o Vi

=1

= Z z az¢uetu+ z OLZ, »
w=k41 i=1

and if we set z* = Zle a,z;*, none of the tkﬂ s Iy1g ,... Can be an atom of z ¥,
But then each of the t;,5, txy3,... is also an atom of yj¥,,, while not of
Xp1 - Vi, S0 necessarily 3% 1 ath, , being the coefficient of t,in yio,
must be the negatlve of the coefficient of 7, in x3,;, for each p >k + 2,
whence necessarily lel a; = ~1. But then #,,, is not an atom of x,; 4 yi.¢
either, a contradiction. Thus there can be at most finitely many values of
1 € [a, b] such that supp(x},, + »*)*t N supp(x¥,; -+ y*¥)~ = {t}, y* being in
L Xt

COROLLARY 2. Suppose x;*,..,x,* is a SAIN sequence in Cla, b), and
a <ty <ty << < t, < b If a<t, and t, < b, there exist sequences
Xin» Vi SUCh that

W) a<xym <t <Yin < Xoy <Ty < Yo, <
< Xy < by < P < b,

(Il) xl',n f tz (i = l,..., n),
(111) Vi \ t,L (l = 1,..., n), (6)
(V) [ti—Xenl = |ti— Pinl =2 = 1,.,n), and

(V) ey w2 € oy > Gy s X1 ¥, X, % is a SAIN sequence on Cla, b).

If a =1y, (6) is valid with the sequence x, , deleted; if t, = b, (6) is valid
with the sequence y, , deleted.

LemMA 4. Suppose x,*%,..., x,* are linearly independent linear functionals
on Cla, bl. Then at most finitely many t € [a, b) exist so that e, , x;*,..., x,*
are not linearly independent on Cla, b].

Proof. Suppose not, and let #;,#y,... in [a, ], & ;<R be such that
X2 .
e, = Y1 o™ Let § = (s, oy En ) €R™ Since the e, , e ... are
linearly independent on Cla, b], necessarily the £; € R” are also. But there
can be at most # linearly independent &; € R®, a contradiction.. J

LeEMMA 5. Suppose xi*,..., x,* are linearly independent linear functionals
on Cla, b}. Suppose mell, |m| < 1, and let ¢, = x,*m (i = 1,..., n). Then
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there exists a v > 0 such that de R, || d — c|| << 7 implies there exists an
r eIl for which both | r| < 1 and x;*r = d; .

Proof. By Lemma C there exists an < 1 for which

i > e

By hypothesis, || > ax;*)| =0 if and only if « = 0. Hence, if
o= min{ 3 o;x;*||; x e R, [| x| = 1}, and 7 < (1 — n)o/n, then if e R
issuch thatljc — d|| < 7,

<7 H ¥ ax*

‘ (x e R™).

S| < | Lo |+ Tl e —di]
<n§'2aixi* \|+(1 — o
<[ Zown|

But the continuous function

DR

attains its norm on the compact set {o« € R*; || «!| = 1}, whence there is an
7' < 1 such that

| X o,

By Lemma E there is then an r eIl such that x,*r = d; ({ = 1,..., n) and
fri<1. B

<7 w Z agx; ™ ‘\\ (weR™).

COROLLARY 3. Suppose € s €t X1 %,..., X, ¥ are linearly independent on
Cla, b). Then there exists a positive constant v such that given any d € R having
norm less than o there is an m € I for which

(1) 7n(tj) =0 (.] - Ia-"a U),
(i) x; m=d;, (i =1,..,n), and (7
(i) |m) < o.
Proof. By Lemma 5 there is an s € I] for which s(¢;) = 0 (j = 1,..., u),

x;*¥s =d; (i = 1,...,n), and || s|| < 1 whenever || d| < 7, de R” (take the
zero polynomial for m in the hypotheses of Lemma 5). Hence, for o > 0,
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m = os satisfies (7) for the data od, ||d]| < 7. But {od;||d]] <7} =
{d; || d|| < 7o}. Since || m| = o| s|| < o, the conclusion follows. §

LEMMA 6. Suppose e;, x1%,..., x,* is a SAIN sequence on Cla, b]. Let
Wit = X% o Xpashiy = X5 — X e xeg, i = L., n. Then wi*,..., w,™ is also
a SAIN sequence on Cla, b].

Proof. Each w;* is a linear combination of ¢, and x/*, whence
<wy*, wp > Cley, x1%,..., x,*>. By hypothesis any x* € {e;, x,%,..., x,*>\{0}
is a SAIN functional; hence any x* € (w,*,..., w,,*>\{0} must also be a SAIN
functional, whence w;*,..., w,* is a SAIN sequence on Cla, b]. |

CoROLLARY 4. Suppose € pers €5 X%, %, % is a SAIN sequence on
Cla, b]. If wi* = X" © Xla,ph\ts,,....1 » then wi¥,..., w,* is also a SAIN
sequence on Cla, b].

.....

LemMMmA 7. Suppose e, ,..., e, , x1%,..., x,* is a SAIN sequence on Cla, b].
i w
Suppose x,*,..., x,* is nonextremal on Cla, b\ L. If w;* = x;* o Xla o0t} s
then wy*,..., w,* is also nonextremal.

Proof. If not, suppose fe Cla, b)\I, || fll = 1 and w* e {w *,..., w,*>,
|| w*|| = 1, are such that | w*f'| = 1. By Corollary 4, w* is a SAIN functional
on Cla, b]. Since f # -1, w* cannot be a positive or negative linear
functional having support [a,5]. Since |w*f| = w*|, necessarily
supp wt* N supp w—* = . By Lemma 2, necessarily w* is finitely purely
atomic, whence the x* e {x;*,..., x,*) such that w* = x*o xruant,...,03
must also have finitely purely atomic support. But then x* is not non-
extremal for Cla, b]\I1, a contradiction. }

Lemma 8. Suppose x,%,..., x,* are linearly independent linear functionals
on Cla, b], and that t;, x; ., , s, (0 = 1,..., u) are sequences of points in [a, b]
such that x; , 7 t;, Viq N 1 as 7 — 0 (i = 1,..., u). Then either €t 3enes €1
x1%,..., X, * are linearly dependent or else

n n+u n+2u
lim inf min YoaxF Y e, Y, wey, (8)
70" acR =1 i=n+1 i=ntutl

flodl=1

is strictly positive.

Proof. By Lemma 4, at most finitely many points 7 & [a, b] exist for which
e, X1 %,..., x,* are linearly dependent. Let B, be the set of these points. Then,
for 1, ¢ By, at most finitely many points ¢ € [q, b] exist for which e;, e, ,
X, %,..., %, ¥ are linearly dependent. Let B, be this set. In this manner we obtain
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finite sets B;, B, ,..., B, for which €t yeees €1 5 X1 %,..., X, * are linearly inde-
pendent whenever t; € By, 1, ¢ B, ,..., and £, ¢ B, . Avoiding these (“finitely”
many) poinis, without loss of generality suppose that 5, > 0 is such that
€y oo €y s x.%,..., x,* are linearly independent whenever 0 << v < ;.
But then €1 seens €1 x*,..., x,* are linearly dependent if and only if

N+t

ki !
miflu Yoo Y e =0,
fx]fR , it i=n41 !
0=

whence by continuity of the expression (8) in the 2n-variables Xy , 5oy Yin »
the expression (8) attains its minima for some 7, over the range 0 << % < %, .
But 0 < n, < n, implies the expression (8) is strictly positive.

An application of Lemmas 5 and 8 now yields

COROLLARY 5. Suppose € s €4 x%,..., x,* are linearly independent
Sfunctionals on Cla, b]. Suppose x;.,, ¥:, are as above. Suppose me M,
| << 1. Then there exists a positive constant v” such that we may choose the
7 > 0 independent of 0 <m < %" so that given 0 < n <" and deR",
Wd— ci| <7thereisanr = r(n, d) eIl for which

1) xFr=x m-+d, (i=1,.,n),

(H) r(xi,'n) = m(xim) (l = L., u)>
(i) (v =m(y;,) (= 1,.,u), and
) lrf <1,

where ¢ = (g 5oy €), ¢; = X, m (§ = 1,..., n).

THEOREM 1. Suppose fe Cla, b)\I1, || f|| = 1. Suppose x.*,..., x,* is a
SAIN sequence in Cla, b] which is nonextremal on Cla, b1\I1. If € sees €4
X%, x, % is a SAIN sequence in Cla, b, then given e > 0 arbitrary there is a
p €l for which

@ x*p=x% (=1,.,n),
() plt) =f) (= 1., u),
@) [pll =], and
v) f—rl<e
Proof.  Let w* = x;® o x14,0064,....,13 - BY Corollary 4, w,*,..., w,,* is a

SAIN sequence on Cla, b]. By Lemma 7, w,*,..., w,* is nonextremal for
Cla, b\I1. By Lemma 1, given ¢ > 0 there is an m € 77 for which

w m = w.*f, (i= 1., m
fm] <|fl and [[f—m| < e/4
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For0 < ¢ < é =min[l ¢t;, — t;1;i,j = 1,..., u, i # j}/2, consider functions
g: defined as

g:x) = £ f(t) — m(t; — O)x — t;) + f(2.), if xeft,—§ ]
= &Xm(t; + &) — fE)(x — 1) + f(8), if xelt;,t + €]

= m(x), otherwise,

For0 < & < &, likewise define T, = {x € [a, b]; | x — ¢ | << éforsomere T},
T being {1, ,..., t,}. Also let v}, , y¥, denote the linear functionals

%k *
Vi = Xz ° Xla,bI\Tg¢ »

¥ % £ _ %
Yig = Wi — Ui e = Xy © XT\T -

Since the measure of T T tends to zero as & — 0%, || yf, || — 0, and hence
v — w;*, as £ — 0. Since g, and m differ at most on T only,

k — gk | *
W; 8 = U e8: 7 Vi e&e
%k * *
=vfm+yfr.g. —wrm, as & -—0.

By Corollary 2, let x; ., , v;., be sequences of points in [a, b] satisfying (6),
with (v) replaced by
(VI) ewl,n 9eeen e"Ju,n ? etl LR etu > xl*a--'5 xn* (9)

is a SAIN sequence on Cla, b].
We now establish several technical results before completing the proof
of Theorem 1.

LEMMA 9. Under the notation above, suppose m' eIl | m' || < 1. Then
there exists an g > 0 such that, for 0 < n < n,, there exists a q = q(x),
g € I1, for which

O vig = w'm (i=1,.,n),

()  q(xin) = m'(x;0) (= L., u),
(i) q(pim) = m'(pim) (= L..,u), and
() flqll <1

(10)

Proof. For nn >0, let 7=1(y) >0 be the positive constant =
given by Corollary 3 for the linear functionals listed in (9). Set
a =71 —[m{)2(n+ 2u) and let h = A, ; ..., € R* be an n-vector whose
isst, nd,..., i;th components are —«, and whose other components are «.
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Let A, denote the ith component of A. Letting 4 also stand for the (n — 2u)-
vector whose first # components are the components of 4 and whose last 2u
components are zero, || 2| < 7(1 — | m'[)), so by Corollary 3 there is an
S = Siie e I for which

@) wts=hy (@=1..,n),

(i) s(z;) =20 (i=1,.,u),

iy s(x;)=0 (I=1,..,u),

i) (¥, =0 (=1,.,u), and

W Lslh<l—{ml.

Choose 7y > 0 so that ||y [ < o/n® holds whenever 0 < 7 < 7}0,

i = 1,..., n. Note that «() is bounded as 7 — 07, Then forevery 0 < % < 7,
a’nd il PR Z'Z B

sgn v Sty igeeeiy = SEOWS Sy, = — 1, if iy, i)
=1, otherwise.

We may now choose 0 << A; < 1 so that

ui”:m()\lsil,iz...il + (1= A) $400) = )21 0
Settmg & = iy, = MSipipi, T (1 —A) 55 .., observe that vfng =
yiam', g ell, g(t)~0(l—1 ), g(xen) — 0 (i = 1,.. 1), g(Fin) —
(3” Lo,n,lgh<1-—{m], and

wire =hy = —o, if icli,.., i}
o, otherwise (i # i).

[

In particular, for i + I, ,

* _ * _ e s s .
SEN U 1 84, 45ty = SEO W Gy i, = — 1, if iefi, i},
=1, otherwise.

Suppose now that g = R I e IT have been found so that

U;fng = y;fnmra (ielty,.. iu})s
w;¥g = —a if Fe€{iyig,e,is (1)

= otherwise (i 5 7;,.... iy),
and
Tgll<<1—lm].
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Since || yi, || < of/n?, it follows from (11) that, for i = i ,..., i,

SEN U; g = sgnw; g = —1, it 1€ {iyy yeues I}

=1, otherwise.

Thus we may find a 0 << A,; << | so that

’

* %
Ui¢+1(A<b+1gil~--iw;i¢+lz‘¢+2---il + (1 = Asy) gil--~i¢;z'¢+2~-il) = YVig SN -

Setting
&yt qpiganis = )\‘b+lgi1"'iw;i¢r+1'“iz+ (1—=2 g+1) &igrerigiiy ety

we have that
ell,

& = Eiyeiyniiy iy i
D;jng - y:f.nl’ﬂ’ . (lE{ll ERRR iilx+1}), g(tl) = 09 (Z = 15---3 u):

gx; =0 (=1,.,u), gy =0, (i=1,..,u),
lgll <1-—m"l,
and
wi*g = hp = —a, if ie€{iyg,ee iy

= q, otherwise (i % iy yuur, Iygq)-

By construction there is therefore a g = g5, €1l for which v}, g =
yiaw ((=1,.,mn),8(t)=00G=1,.,u),8x;,,) =00 =1,.,u),8(y:, =0
(i=1,.,u), and |l g|l <1 —|m|. Setting ¢ =m' + g, gell, g(x;,) =
m/(xi,ﬂ) (l = 13--'9 H), q(yln) = ml(yi,n) (Z = 1:"" u): H q H < l: and

P I TP ST N -
vig =vm +uf g =uvim +yEm =wrm (i=1,..,n. §

Lemma 10.  Under the notation above, suppose m' €ll, | m'|| << 1. Then
there exist positive my and 7' such that for any 0 <n < 7, and || d|| < 7o,
d e R", there is an m" €11 for which

i) v, m =wrm' +d; (i=1,.,n),

(i) m'(x;,) =0 (i=1,.,u),
(iii) m"(y;,) =0 (i=1,.,u), and
) [m"| <o.

Proof. For0 < 5 << 7y, let = = 7(n) > 0 be the positive constant given
by Corollary 3 for the linear functionals listed in (9). Since R~* is finite
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dimensional, suppose d'V,..., d" is a basis of R”, and that |, d¥ || < 7 for
each j = 1,..., n. By Corollary 3 there is then an m; = m(d") € I1 such that
v¥m; = dP (= 1,.,n), m(t) =0 (i=1,.,u), and | m;|| < 1. By
Lemma 9, there are positive constants 7, = n(d"") such that given
0 < <n there is a ¢; =gin)ell for which (10} holds, with
ofg: = wim’ +dP (i = 1,..,n). Set y = min[y; ;j = 0, 1,..., #]. Then if
0<n<y Ry, ||| <1,deRr,d=73,&d" and| d|| < or/n, there
is a gell for which v}, = w*m' +d; (i = 1,...,n), q(x;,) = m(x;.,)
(=1,.,u), g(yi)=m' (Y, ({=1,..u), and || q|| < o. But {deRy
d=73",&d9 for some R, || €]| < 1, | d|| < 7/n} contains a nonempty
open ball about the origin. Set v’ equal to its radius. We need merely show
that we could in fact choose 7’ independent of % for 0 << 7 <C %, , for some
1, < 7. But by Corollary 5 there is an 8 > 0 for which it is possible to choose
the 7 given by Corollary 3 independently of »n in the range 0 <y < f.
Setting 7; = minfy, B8] we are done. [

COROLLARY 6. Under the notation above, there exist positive constants v, ,
T such that 0 << n << ny and || d|| < 70/2, d e R implies there is an m’ €]
for which
©H ofm =d;, (i=1,..,n),
)y mx,)=0 (@
iy m(y,,)=0 (G=Ll..,u), and
(iv) im'| <o.

Il
-
x
pad

Proof. Apply Lemma 10 twice, once to d' = 0 and once to d'¥ = 4,
getting an my and my , respectively. Set m’ = m; — m;. §

Returning to the proof of Theorem !, pick a positive &, < 5, for which
Soaliviell < re(l — | mi)/4 whenever 0 < ¢ < &,. Choose a &, > 0 so
that T, C{x<]a, b]; | gx) — m(x)| < €/4}. Set &, = min[&, , &,]. Then for
0 < €< &,setd — —Ji: 8¢ . By Corollary 6, for any £, << 7 < 7, there
is an m’ € I1 for which

O ofm = —yidge—m) (i=1,..,n),
(i) m'(x;,) =0 (i=1..u),
(i) m(y;,) =0 (i=1,..,u), and

@) fm' | <1 —[[m])e/2.

Define a new sequence of functions 4, as

hf(x) = gf(x) —{" ml(x)a lf X e ian b]\\Tn
= g¢(x), otherwise.
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Then h.eCla, b), h(t) =f(t), (=1.,uw), |f—hll <If—gll+
| m'|| < €2, and

w*h, = vf (g, +m') + yf &,
— w,*g, — yi.g + yim
== v;’jgm + y:jgm
= w;*m

= W’i*ﬁ (l = 1,..., n).

In particular, then, x,* = w;* + x,* o x, implies x, %k, = x,%f (i = 1,..., n).

Finally || A || < ||fll =1, for h, = g, on T,, and | g.| < 1, while
on [a,b1\T, g —m(x), and |m(x)] <[ m], whence |h(x)| <|lm| +
(1 — | m]))/2 < 1 whenever x € [a, b)\T, . By Proposition C, thereis a p Il
for which

) x%p = x;*h; (= 1,.,n),
(i) pt) =hdty) (= Ll..,u),
(i) [[pl =1 hel, and
(iv) ke —pll < €2

Since x;*hy = X (i = 1,..; 0), he(t)) = f(8) (= Loy ), || B || < |1 f 1] and
I f— kel < €/2, done. |

3. NECESSITY
Suppose z;*,..., z,;* is an arbitrary SAIN sequence on Cla, b], and set
Z = {Z*,..., z;*>. We find a different basis of Z as follows: if z7%,..., z,* is
nonextremal for Cla, b)\[1, let z,*,..., z,* be n arbitrary linearly independent
elements of Z. Otherwise, let z,* be a nonzero linear functional in Z which is
extremal with respect to Cla, b)\I1. If Z = {z;*> @ Z, , and the elements of
Z, are all nonextremal for Cla, b)\I1, let z,%,..., z,* be arbitrary lincarly
independent elements of Z, . Otherwise let z,* be a nonzero functional in Z,
which is extremal on Cla, 6]\I1. Continuing in this manner we may find a
maximal sequence of linearly independent functionals z*,..., z,*, each of
which is extremal on Cla, b]\Il. We then let z,,..,z,* be arbitrary
functionals in Z such that z,*,..., z,,* are linearly independent. By Lemma 2,
a SAIN functional is extremal on Cla, b]\I1 if and only if it is finitely purely
atomic, while z¥ ...., z,* forms a SAIN sequence which is nonextremal on
Cla, BT
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In the previous section we considered the case when the finitely purely
atomic functionals z;*,..., z,* were point evaluations (one atom only) and
showed that one had property SAIN holding for such SAIN sequences. We
now handle the case when the z *,..., z,* may have more than one atom
apiece.

Observe first that Theorem 1 implies that the triple (Clg, 8], {1,
{z:1%,..., 2,%, 25 ..., 2,™) has property SAIN whenever the (finitely many)
atoms of z*,..,z.* call them ¢,..,f,, are such that the sequence
€ 5ees €1 s Z¥ 4 Z,F 18 @ SAIN sequence. For if g € Clg, b]and e > 01is
arbitrary, if there must exist a p € IT for which

(i) z*p =2z (j=r+1l..,n),

@y Ipl=Igil, and
(iv) fg—ri<e
then
z;¥ =Y Eye,
i=1
implies

(V) 2P = Zj*g (J = 1""7 l’)

also. Furthermore Lemma 3 and Corollary 2 show that relatively few points
of [a, b] can be such that € sees €1 s z¥.4 ... 2,% is not a SAIN sequence.
Thus in a certain sense, the triple (Cla, 5], I, {z,%,..., z,*}) will have properly
SAIN holding at least for almost all SAIN sequences.

LemmA 11, Suppose x.*, x,%,...,x,* is a SAIN sequence on Cla, b},
x,* purely finitely atomic and x,*,..., x,* nonextremal on Cla, b\I1. If
felCla, bl is such that | x,*f | <||x,*||, then given € > 0 there is a pell
Jor which

() x*p=x (=1..,n)
@ lpli =11l and
(i) [ f—pl <e

Proof. If fell, trivial. Thus suppose fe Cla, b1\II, | fl = 1, and
x* e ¥, x, OMO0N If x* e (xp ¥, x,*0\{0}, by hypothesis | x*f| < || x* .
Thus suppose x* = &x,* - 37, £x;%, with & # 0. Since x* is a SAIN
functional, it is either purely finitely atomic, in +-47 with support [a, b], or
else nonextremal on Cla, b]. But x* finitely purely atomic implies 37 , £;x,*
is also (or else is the zero functional). Since Z?:‘_, &;:x,;% is nonextremal on
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Cla, bJ\11, it is not purely finitely atomic. If x* € - with support x* = [a, b],
[x*f| = || x*| if and only if /= <1 elf. Thus necessarily x* must be
nonextremal on Cla, b}, and hence | x*f| < || x*|l. If x* & {x;*, | x,¥f] <
Il %, *f1| by hypothesis. Since x* € {x,*,..., x,,*>\{0} was arbitrary, x;*,..., x,,*
is nonextremal for f, whence by Lemma 1 the conclusion follows. |

LemmaA 12, Suppose x.*%,..., x,* is a SAIN sequence on Cla, b), x,* finitely
purely atomic and x,%,..., x,,* nonextremal on Cla, b\\I1. Suppose T = {t; ,..., t,,}
is the set of atoms of x,*, and w;* = x;* o i, o0y (J == 2,..., 0). If wo*,..., w,*
is nonextremal on Cla, b\, then given € > 0 and fe Cla, b] arbitrary, there
is a p € Il for which

O x*p=x% (=1..,n),
@) lipli =111, and
(i) |f—pl <e

Proof. Suppose that || /|| = 1. By Lemma 1 there is an m < II for which

@O wrm=w* (=2..,n),
) |m| <[fl, and
(i) [f—ml < e/4.

Observing the proof of Theorem 1 closely, the fact that €t s €1
X5*,..., X, * was a SAIN sequence was critical only in obtaining such an m e [1
as above (the choice of x; ,, , y; ., using Corollary 2 so that the sequence in (9)
is a SAIN sequence may be modified by employing Lemma 4 in place of
Corollary 2 and getting the sequence of linear functions in (9) to be linear
independent, and the linear independence of the sequence (9) was all that was
really used in the balance of the proof). Hence repeating the proof of
Theorem 1 yields the desired conclusion. §

Lemmas 11 and 12 give sufficient conditions in order that a SAIN sequence
x1 %, X%, X, * with x;* finitely purely atomic and x,¥,...; x,,* nonextremal
on Cla, b)\IT be such that the triple (Cia, b}, 11, {x,*,..., x,*}) have property
SAIN. We now show that the hypotheses for at least one of Lemmas 11 and 12
must be satisfied for x.*,..., x,,¥ a SAIN sequence with x;* purely finitely
atomic and x,%,..., x,* nonextremal.

Lemma 13. Suppose x;*,...,x,* is a SAIN sequence on Cla, bl, x*
purely finitely atomic and x,%,..., x,* nonextremal on Cla, b\lI. Suppose
T = {t; your, Ly} = SUPP Xy * and w;* = X;% o 1,000 (J = 2,..., 0). Then there
cannot exist a g € Cla, b\ and a w* € {wy*,..., w,*>\{0} for which both

@) tx*gl=lx*lllgl, and
@) Iwigl=1w*llgl
unless w* should also be finitely purely atomic.
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Proof. Suppose not and let x*e ™., x, )0} be such that
w¥ = x*o yraonr. Then x* = w* + . we, for some o = (v)eR"
By hypothesis (ii) g € Cla, b]\J1 must be such that

glxy =1, if xesupp w¥,
= —1, if xesuppw*
In particular g continuous requires that supp wt* Nsupp w—* = &, and

g == 1 requires then that supp w* £ [q, b]. But x* must be a SAIN functional
(since x;*, x* is a SAIN sequence) and so Lemma 2 requires that
either x* is finitely purely atomic, has support [a,b], or else that
supp x7¥ Nsupp x* #£ @. x* being finitely purely atomic implies w* is
also, and likewise supp x* = [a, b] implies supp w* = [o, b], neither of
which are true. Hence supp x** Nnsupp x* # o.

Suppose that x;* = ¥, Be, and that 7 = {#,..,7,} is such that
ftesupp xt* (I = 1,...,8), ty;esuppx~* (i = 5 + 1,..., s), and ¢, ¢ supp x*
(i=s+1,.,u),0 <s <5 K uwitheithers > 1 ors” = s + 1 {or both}).
Let y = max{ o |/| B; 131 =1,..., 8’} and consider the functional z* =
x* 4+ yx;*. Since hypothesis (i) requires that

g(t) =1, if 1<i<s

= —1, if s+1<7<s,

we observe that z* is neither finitely purely atomic, does not have support
la, 5], and that supp z"* Nsuppz=* = g (for z* = x* — yx;* = w* +
S (o + B e+ zz;:s,ﬂ (o; + vBY) e, and we observe that o; + v, >0
if 1 <i<s, while o + B, <0 if s+ 1 <i<s). Hence z* is a non-
SAIN linear functional, contradicting the assumption that x,*,..., x,* is a
SAIN sequence on Cla, b]. §

Remark 2. If x.*..,x% xfi,..x,  is a SAIN sequence with
x;%,..., x,* finitely purely atomic and x*, ,..., x,,* nonextremal on Cla, b]\/1,
and if fe Cla, b, | fI! = 1is such that | x,*fi = x,*|| foreachi = 1,..,r,
it is possible to replace xy*,..., x,* by a z* such that givenapeil | p| < I,
x:%p = x*f({ = 1,..., n) if and only if z*p = z*f. Moreover this z* will be
such that | z*f] = | z*i. Thus without loss of generality we may suppose
that for a given feCla, b], | fll = 1, that |x*f] <[ x*} for évery
x* e (%L, x, V0

Remark 3. Actually it is possible to improve on Remark 2 by following

a procedure similar to that in obtaining the z,%,..., z,* from the zi*,..., z,,*
specified at the beginning of this section. For, if fe Cla, bJ\I1, || fl = 1 is

640/37/1-3
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arbitrary, let z;* e X = {x*,..., x,*>\{0} be such that | zy*f| = || z,*|| (if
such exist), z,*€X so that z* and z,* are linearly independent and
| 2% | = || z,* ||,..., z,* € X so that z,*,..., z,* are linearly independent and
| z,*f| = || z,*||. We then find a 0 <r <{n so that the sequence of
z%,..., z,* is maximal (i.e., so that z}%,,..,z,* is nonextremal for f if
zy%,..., 2,5, 254 ..., 2, * are linearly independent elements and a basis for X).
By Remark 2, it is possible to replace z;%,..., z,* by an equivalent (sense
specified in Remark 2) extremal finitely purely atomic functional z*, and
we find ourselves considering the case dealt with in Lemmas 11-13. Thus
given an fe Cla, b] and € > 0 arbitrary it is possible to conclude whether
there exist p € I for which (i) x;*p = x,*f (i = 1,...,n), () | p|] = || fl, and
(iii) {| f — pll << € on the basis of the linear functionals x;*,..., x,,* alone, a
sufficient condition being that x,*,..., x,* form a SAIN sequence on Cla, b].
In other words we have shown that:

TurorREM 2. The triple (Cla, bl, 11, {x,*,..., x,*}) has property SAIN if
and only if the sequence x.*,..., X,* is a SAIN sequence.
4. SoME EXAMPLES

ExampLE 4.1.

*
X1 = €785
1/2
xz*:f cdx — ey,
0

3/4
x3* = 3eq — 2eq5 — f - dx.
0
Here x,*, x,*, x3* is not a SAIN sequence on C[0, 1], since
2x% L oxy® A xg* = 2e4, — ﬁj‘; ~dx is not a SAIN functional. Hence
(CI0, 11, 11, {x.*, x,*, x3*}) does not have property SATN.
EXAMPLE 4.2.
1
X * = [ cdx — ey — ey,
Yo

1/2
xa*:f cdx — eyy3.
0

Here x,*, x,* is a SAIN sequence which is nonextremal on C[0, 1]. Hence
property SAIN holds.
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ExAMPLE 4.3.

X ¥ = eyu T €yns

1 oc
Xt = ( dx — ), 2_iesi s {sdiza
J3/4 i=1
rationals in [3/4, 1].
Here x,*, x,* is a SAIN sequence, x;* is finitely purely atomic with atoms
1/4, 1/2, and ey, €155, X* is also a SAIN sequence. Since x,* is non-
extremal, property SAIN holds.

ExampLE 4.4,

x* = erp + ez — (1/2) e,
1/2

X% = ey + o3+ f ndx — ey
0

Here x;%, x,* is a SAIN sequence, x;* is finitely purely atomic with atoms
1/4, 1/2, 3/4; x,* is nonextremal, and ey, €,/5, €34, X* 15 Dot 3 SAIN
sequence (x,* — ey/9 — €354 - €174 = fﬁ/z - dx is not a SAIN functional). On
the other hand, if ge Cla, bl, || gl = 1 is such that | xy*g | = | x;* !, then
(wlog) g(1/2) = g(3/4) = 1, g(1/4) = —1, whence | w*g | < | w* |, where
w¥ = fil) * . dx. Hence property SAIN holds.

5. GENERALIZATIONS ?

The characterizations obtained in Sections 2 and 3 and summarized as
Theorem 2 in Section 3 assume that the dense subspace M of Cla, b] is the
polynomials 7. Actually this is somewhat stronger an assumption than
necessary. For example, if M should be any dense subalgebra (containing the
constants) of the polynomials /7, identically the same characterizations as
given in Theorem 2 hold. In fact, if M is any dense subalgebra of Cla, 5]
for which the SAIN functionals with respect to M are the same as those with
respect to I, the same conclusion may be true (is true if in addition any
m € M can attain its norm only finitely often).

For more general dense subspaces of Cla, b], the characterizations anal-
ogous to Theorem 2 appear to vary to some extent. One underlying reason
is that the SAIN functionals with respect to different dense subspaces can
differ to some extent (e.g., consider the SAIN functionals of a dense sub-
algebra not containing the constant functions. Type ii (positive or negative
linear functionals with support [a, b]) are no longer SAIN functionals then).
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A special example of dense subalgebras M that we can immediately give
characterizations analogous to Theorem 2 are the subspaces of the form:

M = M(D) = {f < Cla, b]; f coincides with a polynomial
in each connected component of {a, b]\D}, (12)

where D is a finite union of subintervals of [a, #]. Moreover, considering
such subspaces M as in (12) is equivalent to considering the underlying
function space to be C(7"), where T is a disjoint union of compact intervals
and M is the direct sum of the spaces of polynomials on each component of 7.

For all these special cases, the corresponding characterizations seem to
possess underlying similarities to those when M = II (in particular, every
SAIN sequence seems to be such that property SAIN holds). Perhaps a
closer examination and determination of these similarities would allow one
to produce characterizations of property SAIN for more dense subalgebras
(and subspaces).

It should be noted that although the use of an interval was fundamental
to the proof, the type of characterizations obtained ought also to be valued
for more general function spaces C(7), T not one-dimensional.
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