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The SAIN approximation scheme introduced by Deutsch and Morris [1-3]
may be stated as follows:

SAIN ApPROXIMATION SCHEME. Suppose M is a dense subset ofa normed
linear space X and {Xl*, ... , Xn *} is a finite subset of the dual x* of X. Given
X E X, approximate it by an mE M for which xi*m = Xi*X (i = 1, ... , n) and

Ilmil =llxlj·
The SAIN approximation problem is to determine what n-tuples of linear

functionals Xl *, ... , X n* will be such that any X E X may be approximated
arbitrarily closely by an m E M under the SAIN approximation scheme.
Equivalently, for what n-tuples of linear functionals does a Weierstrass
theorem hold for the SAIN approximation scheme?

Several authors have contributed to solving the SAIN approximation
problem, both in abstract and concrete spaces (e.g., [5,6,8-10, 12]). We
consider the SAIN approximation problem in the concrete space of all
continuous functions on a compact interval, where we take the dense subset M
of C[a, b] to be the polynomials II. The result obtained can be generalized
to some other dense subspaces M of C[a, b], some cases of which will be
given below.

Even though the proof below is more complex, the characterization
obtained for the solution of the SAIN approximation problem is as simple
as that of the related OSAS approximation problem dealt with by the author
[7] earlier. The compendium of the results below is stated in Theorem 2,
located at the end of Section 3.
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1. PRELIMINARIES
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In their fundamental paper [2], Deutsch and Morris observed that one
obtained an affirmative answer to the SAIN approximation problem on
C(T), T compact Hausdorff, whenever M was a dense subalgebra of C(T)
and the linear functional side conditions were all point evaluations. We
rephrase their result as Proposition A below. Though most recent work on
the SAIN approximation problem has not dealt directly with function spaces,
one exception is an interesting result obtained by Lambert [9] which we give
as Proposition C.

The goal of this paper is to study the SAIN approximation problem for
the special case of T being a compact interval and M the polynomials. The
characterizations obtained are useful and easy to apply in concrete problems.

LEMMA A [11,4]. Ifx* is a bounded linear functional on C(T), T compact
Hausdorff, then there exist positive linear functionals u*, v* on C(T) such that

x* = u* - v*, II x* II = II u* I + 1, v* .

Furthermore the u*, v* are uniquely defined by the x*.

LEMMA B [11,4]. Ifx* is a [positive] linear functional on C(T), then there
exists a finite [positive] Borel measure fL such that

u*(f) = Jf dfL (fE C(T)).

We recall that by the support of a bounded linear functional x* we mean
the support of the finite Borel measure fL representing x*.

DEFINITION 1. We say that a linear functional x* has finitel}' atomic
support (is purely finitely atomic) in case the associated Borel measure is
(i) purely atomic, and (ii) has at most a finite number of atoms.

PROPOSITION A [2]. Suppose M is a dense subalgebra of C(T), T compact
Hausdorff. IfXl *,... , X n * each have finitely atomic support, then givenfE C(T)
and E > 0 arbitrary there is an mE M such that xi*m = x/'''f (i = 1,... , n),
Ii m II = lifll, and Ilf - mil < E.

LEMMA C [4]. Suppose X is a normed linear space, {CI , ... , cn } arbitrary
scalars, {Xl *, ... , X n *} a finite subset of the dual X*, and A > O. Then for any
E > 0, there exists an X E X such that

and II xii < A+ E, (1)
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if and only if
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(2)

for all a = (al ,... , an) E IRn.
At times a slightly stronger result is desired than Lemma C, which we can

get using Yamabe's theorem [13]:

LEMMA D (Yamabe's theorem). Suppose M is a dense convex subset of a
normed linear space X. For Xl *, ... , Xn * E X*, E > 0, and X E X there is an
mE M such that xi*m = Xi*X (i = 1, ... , n) and II x - m [I < E.

LEMMA E. IfM is a dense subspace ofX, under the hypotheses ofLemma C
there exists an m E M such that

Xi*m = Ci (i = 1,... , n)

if and only if(2) holds.

and II mil <,\ + E (3)

PROPOSITION B [6]. Suppose M is a dense subspace of a normed linear
space X. If Xl *, ... , Xn * E x* and x E X\M are such that there exists an m EM
such that

x/m = Xi*X (i = 1, ... , n) and Ilmil <[Ixil

then given E > 0 arbitrary there is an rEM such that

Xi*r = x/x

II r II < II x II and

(i = 1,... , n),

[[ x - rll < E.

PROPOSITION C [9]. Suppose fE C(T), T compact Hausdorff. Iff attains
its norm at mostfinitely often on T, then given any linear functionals Xl*, ... , Xn *
on C(T), any E > 0 and any dense subalgebra M ofC(T), there exists an m E M
such that

Xi*m = xi*f

II m II = Ilfll and

(i = 1,... , n),

Ilf-mil < E.

(4)

Current terminology is to say that the triple (C(T), M, {Xl *,... , Xn *})
has property SAIN if and only if the conclusion (4) above holds for some
m = m{€) E M, for any E > 0 andfE C(T) arbitrary.

DEFINITION 2. Suppose X is a normed linear space, and M a dense subset
of X. A linear functional x* E X* is said to be a SAIN functional in case the
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triple (X, M, x*) has property SAIN. A finite sequence Xl"', ... , X n* is said
to be a SAIN sequence in case every X E <Xl* , , is a SAIN functional,
where <Xl*,... , X n *) is the linear span of Xl *, , x,/.

Remark 1. A necessary condition that a triple (X, M, {Xl*, ... , X n *}) have
property SAIN holding is that the sequence Xl*, ... , X n * be a SAIN sequence.
We investigate the converse of this statement below.

We will use the notation f!JJ to denote the cone of positive linear functionals
defined on a function space. supp x* will designate the support of the
functional x*. We will also designate the u*[v*] of Lemma A by x+* or
(x*)+ [r* or (x*)-] and call it the positive (resp. negative) part of x*.
XB will denote the characteristic function of the subset B of [a, b]. The norm
used in Euclidean space IRv will be II-norm:

v

Ileal ,..., av)l] = I I OLj

j~l

DEFINITION 3. If X E X and x* E X*, x* is said to be nonextremal with
respect to x in case I x*x I < [I x* [I [I X [I. A finite sequence Xl*, ... , X n * of
linear functionals is said to be nonextremal with respect to X in case every
nonzero x* E <Xl*, ... , X n*) is nonextremal with respect to x. A sequence
Xl *,... , Xn * is said to be nonextremal in case it is nonextremal with respect to
every nonzero X E X.

LEMMA 1. If Xl*,..., Xn * are linearly independent linear functionals non
extremal with respect to an X E X, then given E > 0 arbitrary there is an m E M
such that

Ilm:1 <llx and

(i = 1,... , n),

[! X - m < E,

whenever M is a dense subspace of the normed linear space X.

Proof. Let S = {x* E <Xl*, ... , Xn *); I[ X* I! = I}. Then the expression

] x*fl/[] x*![ 1Ifi! (5)

is a continuous function of x* E S, and stricted bounded above by 1 for every
x* E S. But S is compact, so (5) must attain its supremum. Hence there is a
o < ,\ < 1 such that Ix~f I :s;,\ [I x* [llifl[ holds for all x* E<XI *, ... , Xn *)\{O}.
The conclusion now follows from Lemma E and Proposition B. I

COROLLARY 1. If M is a dense subspace of a normad linear space X and
Xl*, ..., Xn * is a nonextremal SAIN sequence on X, then the triple
(X, M, {Xl*,... , Xn *}) has property SAIN.



18 DARELL J. JOHNSON

We recall that to show property SAIN holds for a triple (X,M,{xl *, ...,xn *}),
it suffices [2] to show that given € > 0 andfE X arbitrary that there exists a
P EM for which Xi*P = x;*f (i = 1,... , n), /I P /I ~ Ilfll and Ilf - P /I < E.

We use x* 0 XA to denote the restriction of x* to C[A], i.e., (x* 0 XA)(f) =

x*<xA!) for any fE C[a, b].

2. C[a, b] AND II: SUFFICIENCY

LEMMA 2. If[a, b] is a compact interval and x* a bounded linear functional
on C[a, b], then x* is a SAIN functional (with respect to X = C[a, b] and
M = II) if and only if either

(i) x* has finitely atomic support, or

(ii) x* E ±Y' and supp x* = [a, b], or

(iii) supp x+* n supp x-* =1= 0.

Proof If neither (i), (ii), nor (iii) hold, necessarily x* = x+* - x-*
with supp x+* disjoint from supp x-*. By Urysohn's lemma we may con
struct a continuous function g on [a, b] so that g(x) = 1 on supp x+*, -Ion
supp x-*, and I g(x)] ~ I otherwise. If p Ell is such that x*p = x*g,
necessarily x+*p = x+*g and x-*p = x-*g. At most one of x+*, x-* may
be purely finitely atomic and neither has support all of [a, b]. Suppose that
x+* is neither purely finitely atomic nor the zero linear functional on C[a, b].
But then any p EII such that x+*p = x+*g = [I x+* II must be one on a set
of positive measure, whence necessarily identically one on [a, b]. If
supp x-* =1= 0, II g - p II ;?o 2 and done. Thus we may suppose supp x-* = 0.
Since supp x+* =1= [a, b], let t E [a, b]\supp x+* and define a continuous
hE era, b] so that h = 1 on supp x+*, -1 at t, and so that Ih(x)I ~ 1
elsewhere on [a, b]. Then as above any p Ell such that x+*p = x+*h =
II x+* II must be one on a set of positive measure, and so II p - h II ;?o 2.

Conversely, (i) is a special case of Proposition A, while (ii) and (iii) are a
special case of Proposition B, for if (ii), [x*fl = II x* II if and only if
f = ~ EII, and if (iii), x* does not attain its norm on C[a, b]. I

LEMMA 3. Suppose Xl *,... , Xn * is a SAIN sequence in C[a, b]. Then there
are at most finitely many t E [a, b] such that et, Xl*, ... , X n * is not a SAIN
sequence in era, b], where et is point evaluation at t.

Proof By induction. By Lemma 2, an x* is not a SAIN functional if and
only if supp x* =1= [a, b], supp x+* n supp x-* = 0, and x* does not have
purely finitely atomic support. Suppose n = 1. If x* E (et , Xl*) is not a
SAIN functional, necessarily x* = et + gXl* for some gE R If supp Xl* =
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la, b], so is supp x*, and if Xl * is purely finitely atomic so is x*. Hence
suppose that supp xt* n supp x1* ¥= 0. In order for x* not to be a SAIN
functional it is necessary that supp x+* n supp x-* = 0, whence clearly
we must have supp xt* n supp x1* = {t}, a singleton set. Thus if n = 1,
at most one t EO [a, b] may exist so that et , Xl * is not a SAIN sequence.

Suppose valid for n = k. In order that an x* EO <et , Xl *, ... , X;+l) not to be
a SAIN linear functional, except for finitely many t EO [a, b], necessarily
x* = goet + glX1* + ... + g"'+lxZ+1, no gj = O. Since x1*, ... , X;;'+l is a
SAIN sequence, in order for x* not to be a SAIN functional it is necessary
that {t} = SUPP(glX1* + ... + g"'+lX;;'+l)+ n SUPP(glX1* + ... + g"'+lXt+1)
and that t is an atom of glX1 * + ... + g"'HX:+1 . We therefore consider
functionals of the form x:+1 + y*, y* EO <Xl*, ... , Xk *). Suppose t1 , t2....
in [a, b] and yt*,Y2*, ... in (x1*, ... , x,/) are such that sUPP(X:+1 + Y1*)+ n
suPP(Xt+1 n Y1 *)- = {t1}, sUPP(X:+1 + Y2 *)+ n supp(x:+1 + Y2 *)- = {t2}, .. ·,

and that moreover t1is an atom of x:+1+ Y1 *, t2 is an atom of x:+1 + Y2 *, etc.
Since dim<x1*,... , X", *) = k < +00, at most k of the yt*, Y2 *, ... are linearly
independent; suppose yt*, ... , Y", * are. Suppose Y:+1 = 0I1Yt* ... + OI",YI< *.
At least one of the coefficients OIi is not zero; suppose OIl ¥= O. Since
X:+1 + Y:+1 = X;;'+l = 0I1Y1 * + CX2Y2 * + ... + cx"Y",* is such that suPP(Xt+1 +
yt+1)+ n supp(x:+1 + Y:+1)- = {t"'+l}' either tkH is some t1 ,... , t", or else none
of the t1 , ... , t" is an atom of X:+1 + cx1Y1* + ... + OI"y,,*. But each t j is an
atom of Xt+1 + yt*, whence necessarily' each tj is also an atom of
CX1Yt* + + (CXj - l)yt* + ... + cx"Y",*, and in fact necessarily of
CX1Y1 * + -+- CXj-1Yf-1 + OIj+lY41 + ... + cx",Y", *, and hence of at least one
of the Yi*' i ¥= j, which has a nonzero coefficient CXi • On the other hand t"+l
is an atom of X:+1 + CX1Yt* + ... + CX'cYl< *, so t"'H is an atom of either x:+1
or some Yi*' If tTcH is an atom of x:+1 , then t"+l not being an atom of
X:+1 + Y;* for every j = 1,... , k implies that t"H has to be an atom of
every Yj*. Hence tTcH is an atom of some Yi*' By the pigeon-hole principle,
two of the t1 , ... , tHl have to be atoms of the same Yi*' for some i = 1,... , k.
Suppose t", t"+1 are atoms of Y1 *. Then X:+1 + Yt* not having tk+l as an
atom implies tk+l must be an atom ofx:+1 , and hence ofevery Yi *, i = k.
Similarly, for every I-t ): k + 1, tu, must be an atom of X:+1, and hence of
every Yi*' i = 1, ... , k. Thus, we may decompose x* as

X* = L: fu,etu, + w*, fu, ¥= 0
u,~k+1

for all I-t): k + 1,

where w* does not have any of the tTc+l, tTc+2 ,... as atoms. Similarly, we must
have, for each i = 1,... , k + 1,

'"
Y;* = L: Pi,u,etu, + Zi*' Pt.", ¥= 0

ih=k+l

for all fL,
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and in fact necessarily pi,,,, = If,,, for every fL and i, where none of the
tl<+l, tl<+2 " .. is an atom of z/. But then

I<

Y:+1 = L CXiYi*
i~l

co Ie Ie

= L L CXi!f",et" + L CXiZi*,
",=1<+1 i=l i=l

and if we set z* = 2::=1 CXiZi*' none ofthe tl<+l , tH2 ,... can be an atom of z*.
But then each of the tl<+2' tl<+3,'" is also an atom of Yt+I' while not of
* * '1 "k ,f, b' h ffi . f' *Xk+I + YI<+I' so necessan Y "..d=I CXi'f'" , emg t e coe crent 0 t", m Yk+l'

must be the negative of the coefficient of t,. in Xt+I' for each fL ;:?;. k + 2,
whence necessarily 2::~d CXi = -1. But then t le+1 is not an atom of Xt+I + Y:+I
either, a contradiction. Thus there can be at most finitely many values of
t E [a, b] such that sUPP(X~+l+ y*)+ n suPP(Xt+1 + y*)- = {t}, y* being in
(Xl*, ..., Xt+I>' I

COROLLARY 2. Suppose xI *,... , xn* is a SAIN sequence in qa, b], and
a ~ tl < t2 < .. , < tu ~ b. If a < tl and tu < b, there exist sequences
Xi.lI , Yi,lI such that

(i) a < xl. lI < tl < YI.lI < X2,lI < t2 < Y2,,, <. ...
< xu,,, < tu < Yu,,, < b,

(ii) Xi,,,;'1 t i (i = 1" .., n),

(iii) Yi." \.. t i (i = 1,..., n), (6)

(iv) I ti - Xi," I = I ti - Yi,,, I = 'lJ (i = 1,... , n), and

(v) ex ,ey , ... , ex , ey , Xl*, ... , Xn * is a SAIN sequence on C[a, b].
,~,~ .~.~

If a = t1 , (6) is valid with the sequence Xl,,, deleted; if tu = b, (6) is valid
with the sequence Yn,n deleted.

LEMMA 4. Suppose Xl*, .." x,,* are linearly independent linear functionals
on C[a, b]. Then at most finitely many tE [a, b] exist so that et, xr*, ..., x,,*
are not linearly independent on qa, b].

Proof Suppose not, and let tI , t2 , ... in [a, b], ti,j E IR be such that
et ; = 2::7=1 ~i,iXt*. Let gj = t~l,j , ~2,j , ... , gn,j) E IRn , Since the et, ' et2 , ... are
linearly independent on qa, b], necessarily the gj E \R.n are also. But there
can be at most n linearly independent ~j E IRn, a contradiction. I

LEMMA 5. Suppose Xl *,.. " X n * are linearly independent linear functionals
on qa, b). Suppose m EIT, II m II < 1, and let Ci = xi*m (i = 1, ..., n). Then
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there exists aT> 0 such that dE !R.n, Ii d - c [i < T implies there exists an
r E II for which both II r Ii < 1 and x/r = di .

Proof By Lemma C there exists an TJ < 1 for which

(ex E !R.").

By hypothesis, I[ I: exiXi* il = 0 if and only if ex = O. Hence, if
u = min{li L extXi* [I; ex E !R.n, [I ex I[ = I}, and T < (l - YJ)u!n, then if dE!R.n

is such that II c - dl[ < T,

But the continuous function

attains its norm on the compact set {ex E !R.n; Ii ex:1 = I}, whence there is an
YJ' < 1 such that

(ex E !R.n).

By Lemma E there is then an r Ell such that xi*r = di (i = 1,... , n) and
II r:1 < 1. I

COROLLARY 3. Suppose et ,... , et ,Xl*, ... , Xn* are linearly independent on
1 u

C[a, b]. Then there exists a positive constant T such that given any dE !R.n having
norm less than TU there is an m E II for which

(i) met;) = 0 (j = 1, , u),

(ii) xi*m = di (i = 1, , n), and

(iii) II m:1 < u.

(7)

Proof By Lemma 5 there is an sEll for which sct;) = 0 (j = 1,... , u),
Xi*S = dt (i = 1,... , n), and II s II < 1 whenever Ii dl[ < T, dE R" (take the
zero polynomial for m in the hypotheses of Lemma 5). Hence, for u > 0,
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m = as satisfies (7) for the data ad, II dll < T. But {ad; II dli < T} =
{d; II dll < Ta}. Since II m II = a II s II < a, the conclusion follows. I

LEMMA 6. Suppose et, Xl *, ... , Xn * is a SAIN sequence on C[a, b]. Let
Wi* = Xi* ° X[a,b]\{t} = Xi* - xi* ° X{t}, i = 1,... , n. Then wl *,... , wn * is also
a SAIN sequence on C[a, b].

Proof Each Wi* is a linear combination of et and Xi*' whence
<WI *, ... , Wn *) C <et, Xl *, ... , Xn *). By hypothesis any x* E<et, Xl *,... , Xn *)\{O}
is a SAIN functional; hence any x* E <wl *, ... , W n *)\{O} must also be a SAIN
functional, whence WI *,... , W n * is a SAIN sequence on C[a, b]. I

COROLLARY 4. Suppose etl ,... , et
u

'

C[a b] If' w·* = x·* ° X[, . J" " a,b]\{tl, ....t) ,
sequence on C[a, b].

Xl*,... , Xn * is a SAIN sequence on
then WI *, ... , Wn * is also a SAIN

LEMMA 7. Suppose et ,... , et , xl*, ... , Xn * is a SAIN sequence on C[a, b].
I u

Suppose Xl *, ... , Xn * is nonextremal on C[a, b]\Il·lfWi* = Xi* ° X[a,bl\ (tl .... ,t) ,
then WI*,... , Wn * is also nonextremal.

Proof If not, suppose fE C[a, b]\ll, Ilfll = 1 and w* E <WI*, ... , Wn *),
II W* II = 1, are such that I w*f[ = 1. By Corollary 4, w* is a SAIN functional
on C[a, b]. Since f ef= ±~, w* cannot be a positive or negative linear
functional having support [a, b]. Since Iw*f I = II w* II, necessarily
supp w+* n supp W-* = 0. By Lemma 2, necessarily w* is finitely purely
atomic, whence the X*E<Xl*, ... ,xn *) such that w* = x*OX[a,b]\{tl, .... t)
must also have finitely purely atomic support. But then x* is not non
extremal for C[a, b]\ll, a contradiction. I

LEMMA 8. Suppose Xl *,... , Xn * are linearly independent linear functionals
on C[a, b], and that ti , Xi,.", Yi,." (i = 1,... , u) are sequences ofpoints in [a, b]
such that Xi,.".l' ti , Yi,." \,;. ti as YJ ---+ 0+ (i = 1,..., u). Then either etl ,... , et

u
'

Xl *, ... , Xn * are linearly dependent or else

is strictly positive.

Proof By Lemma 4, at most finitely many points t E [a, b] exist for which
et, Xl *,... , Xn * are linearly dependent. Let B1 be the set of these points. Then,
for tl rf: Bl , at· most finitely many points t E [a, b] exist for which et, etl ,
Xl *, ... , Xn * are linearly dependent. Let B2 be this set. In this manner we obtain
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finite sets Bl , B2 , •.• , Bu for which et , ... , et , Xl *, ... , Xn * are linearly inde-
1 u

pendent whenever t l ¢ Bl , t2 ¢ B2 , ... , and tu ¢ Bu. Avoiding these ("finitely"
many) points, without loss of generality suppose that 1)1 > 0 is such that
eX l,7J , ... , eYu .7)' Xl*, ... , X n * are linearly independent whenever 0 < YJ ~ '11'

But then et , ... , et , Xl *, ... , X n * are linearly dependent if and only if
1 u

whence by continuity of the expression (8) in the 2n-variables X l ,7J , ... , )'u,7J ,

the expression (8) attains its minima for some 1)2 over the range 0 ~ 1) ~ 1)1 •

But 0 ~ 7)2 ~ 7)1 implies the expression (8) is strictly positive. I
An application of Lemmas 5 and 8 now yields

COROLLARY 5. Suppose et ,... , et , Xl*, ... , X n* are linearly independent
1 u

functionals on C[a, b]. Suppose X;,7J' Yt,n are as above. Suppose mE M,
il m I: < 1. Then there exists a positive constant r/' such that we may choose the
T > 0 independent of 0 < 1) ~ r/' so that given 0 < YJ ~ 'II! and dE (Rn,

II d - c.1 < T there is an r = r(YJ, d) Ell for which

(i) Xt*r = x;*m + d;

(ii) r(x;,7J) = m(xt.7J )

(ili) () ()r Y;,7) = m Y;,n

(iv) Ii r!1 < 1,

(i = 1, , n),

(i = 1, , u),

(i = 1, , u), and

where c = (cl , ... , cn), c; = x;*m (i = 1,... , n).

THEOREM 1. Suppose fEC[a,b]\II, lifll = 1. Suppose x 1*, ... ,xn * is a
SAIN sequence in C[a, b] which is nonextremal on C[a, b]\II. if et ,... , et ,

1 u

Xl *, ... , X n * is a SAIN sequence in C[a, b], then given E > 0 arbitrary there is a
p E II for which

(i) x;*p = xi*f (i = 1, , n),

(ii) p(tf ) = j(tf ) (j = 1, , u),

(iii) :1 p Ii = and

(iv) Ilf - p il < E.

Proof. Let w;* = x;* 0 X[a,bJ\{t,,, .. ,t
u

} . By Corollary 4, wl *,... , W n * is a
SAIN sequence on C[a, b]. By Lemma 7, wl *,... , W n * is nonextremal for
C[a, b]\II. By Lemma 1, given E > 0 there is an m E II for which

Wi*m = w;*f,

I'm il < ilfl! and

(i = 1,... , n)

lif-mii < E/4.



24 DARELL J. JOHNSON

For 0 < g < go = min[1 t i - t j I; i, j = 1,... , u, i #- j]/2, consider functions
gg defined as

gg(X) = g-l(f(ti) - m(ti - m(x - ti) j(ti),

= g-l(m(ti + g) - j(ti))(x - t i) + j(ti),

= m(x),

if x E [ti - g, til

if x E [ti , ti + g]
otherwise.

ForO < g < go likewise define Tg = {x E [a, b]; Ix - t I :(; Uorsome t E T},
T being {t1 , •.. , tu }' Also let vtg , ytg denote the linear functiona1s

Since the measure of Tg\T tends to zero as g-'>- 0+, II ytg II -'>- 0, and hence
vtg -'>- Wi*' as g-'>- 0+. Since gg and m differ at most on T g only,

as g-'>- o.

By Corollary 2, let Xi,,, , Yi,,, be sequences of points in [a, b] satisfying (6),
with (v) replaced by

(v') ex ,... , ey , etl ,... , et , x1*,···, Xn *
1,11 u,'YJ u

(9)

is a SAIN sequence on C[a, b].
We now establish several technical results before completing the proof

of Theorem 1.

LEMMA 9. Under the notation above, suppose m' E II, II m' II < 1. Then
there exists an '1]0 > 0 such that, for 0 < 'I] :(; '1]0' there exists a q = q('1]),
q E II, for which

(i) vt"q = wi*m' (i = 1,... ,11),

(ii) q(Xi,") = m'(xi,") (i = 1,... , u),
(10)

(iii) q(Yi,") = m'(Yi,,,) (i = 1,... , u), and

(iv) II q II < 1.

Proof For 'I] > 0, let 7 = 7('1]) > 0 be the posItive constant 7
given by Corollary 3 for the linear functionals listed in (9). Set
0: = 7(1 - II m' 10/2(n + 2u) and let h = hi!'i.... i! E IRn be an n-vector whose
i1st, i2nd, ... , ilth components are -0:, and whose other components are 0:.
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Let h(i) denote the ith component of h. Letting h also stand for the (n --'-- 2u)
vector whose first n components are the components of h and whose last 2u
components are zero, Ii h!1 < T(1 - I! m' 11), so by Corollary 3 there is an
S = Si i ... ; Ell for which

'" L

(i) Wi*S = h(;) (i = 1, , n),

(ii) S(ti) = 0 (i = 1, , u),

(iii) S(Xi,7») = 0 (i = 1, , u),

(iv) S(Yi,n) = 0 (i = 1, , u), and

(v) I! S II < 1 - II m' II·

Choose 'l)o > 0 so that !I Yi~7)!1 < ex/n2 holds whenever 0 < 'l) ~ 710 ,
i = 1, , n. Note that ex('l)) is bounded as 'l) ---+ 0+. Then for every 0 < 'l) ~ 'l)o

and i1 , , i z ,

= 1,

We may now choose 0 < Al < 1 so that

if i E {i1 , ... , il}'

otherwise.

Setting g = gi 'i .··i = ,\rs; ; ... ; + (1 - AI) Si ... i , observe that v* g =
l' 2 l l' 2 l 2 l Z1'1'1

Y~,7)m', g Ell, g(ti) = 0 (i = 1, ... , u), g(Xi,7») = 0 (i = 1, ..., n), g(Yi,7») = 0,
(i = 1,... , n), II g Ii < 1 -II m' II, and

W;*g = h(i) = -ex,

== cx,

In particular, for i # i1 ,

if i E {i2 ,... , il}

otherwise (i =F i1).

= 1,

if i E{i2 .. , il}'

otherwise.

Suppose now that g = gi ' .. i,,:i,l, ... i E II have been found so that
1 'P' ,+,+1 1

vt7)g = yt7)m',

Wi*g = -ex, (11)

and

== LX, otherwise (i =F- i1 , ... , iw),

II g!1 < 1 - 11 m'
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Since II ytnll < ex/n2
, it follows from (11) that, for i =1= i1 , ... , i", ,

sgn v~ng = sgn w/g = -1,

= 1,

if i E {i"'+l ,... , il}

otherwise.

Thus we may find a °< A"'+l < 1 so that

Setting

we have that

g(ti) = 0, (i = 1,... , u),

g(Xi,n) = ° (i = 1,... , u), g(Yi.n) = 0, (i = 1,... , u),

II g II < 1 - II m' II,
and

Wi*g = h(;) = -ex,

= cx,

if i E {ii/J+2 ,.•• , il}

otherwise (i =1= i1 , ... , i"'+l)'

By construction there is therefore a g = g1,2 ..... n E II for which vtn g =
Yi~nm' (i = 1,... , n), g(ti) = °(i = 1,... , u), g(Xi,n) = °(i = 1,... , u), g(Yi.n) = 0
(i = 1,... , u), and II g II < 1 -II m' II. Setting q = m' + g, q Ell, q(Xi.n) =

m'(Xi.TJ) (i = 1,... , u), q(Yi.n) = m'(Yi.n) (i = 1,... , u), II q II < 1, and

(i = 1,... , n). I

LEMMA 10. Under the notation above, suppose m' E II, II m' II < 1. Then
there exist positive YJl and T' such that for any °< YJ ~ YJl and II d [I < Ta,
dE Rn, there is an m" Ell for which

and

(i = 1, , n),

(i = 1, , u),

(i = 1, , u),

(i) Vi,nm" = wi*m' + di

(ii) m"(Xi,n) = 0

(iii) m"(Yi,n) = 0

(iv) [I m" I[ < a.

Proof For 0 < YJ ~ YJo , let T = T(YJ) > 0 be the positive constant given
by Corollary 3 for the linear functiona1s listed in (9). Since IRn is finite



SAIN APPROXIMATION IN C[a, b] 27

dimensional, suppose d(l), ... , d(n) is a basis of IRn, and that Ii d(j):1 < T for
eachj = 1, ... , n. By Corollary 3 there is then an mj = m(d(j)) Ell such that
v,*mj = dl j

) (i = 1'00" n), miti) = 0 (i = 1'00" u), and I. mj:1 < L By
Lemma 9, there are positive constants 1]j = 1]o(d(j)) such that given
o < 1] ~ YJj there is a qj = qh) Ell for which (l0) holds, with
D;nqj = 11'i*m' + dF) (i = 1,... , n). Set y = min['I]j ;j = 0, 1'00" n]. Then if
o < 'I] ~ y, gE IR", :1 t II ~ 1, dE IR", d = L:;~1 tjd(j) and :1 d II < aTln, there
is a q Ell for which v;nq = wi*m' + d; (i = 1'00" n), q(Xi,1)) = m'(x;,1))
(i = 1,... , u), q(Yi,1)) = m'(Yi,1)) (i = 1'00" u), and Ii q II < a. But {d E IRn;
d = L:;~1 gjd(j) for some t E IRn, II g II ~ 1, Ii d II < Tin} contains a nonempty
open ball about the origin. Set T' equal to its radius. We need merely show
that we could in fact choose T' independent of 'I] for 0 < 'I] < YJ1 , for some
'1]1 ~ y. But by Corollary 5 there is an f3 > 0 for which it is possible to choose
the T given by Corollary 3 independently of YJ in the range 0 < 1] ~ f3.
Setting 1]1 = min[y, f3] we are done. I

COROLLARY 6. Under the notation above, there exist positive constants 1]0 ,

T such that 0 < 1] < 1]0 and II d II < Ta12, dE IRn implies there is an m' Ell
for which

(i) v;1)m' = di (i = 1'00" n),

(ii) m'(xi,1)) = 0 (i = 1,... , u),

(iii) m'(Yi,n) = 0 (i = 1'00" u), and

(iv) m'li < a,

Proof Apply Lemma 10 twice, once to d(l) = 0 and once to d(2) = d,
tt ' /I d" t' 1 S t' " " Ige mg an m 1 an m2 , respec lve y. e m = m2 - m 1 •

Returning to the proof of Theorem 1, pick a positive gl < 1]0 for which
L:;~1 Ii y;g < T€(l - II m 11)/4 whenever 0 < t < tl' Choose a t2 > 0 so
that Tg, C {x E [a, b]; Igg(x) - m(x)I < E/4}. Set to = min[tl' g2]' Then for
o < g <: go, set di = -ytg gg , By Corollary 6, for any go < 1] < 1]0 there
is an m' E II for which

(i = 1, , n),

(i = 1, , u),

(i = 1, , u),

(1) v;1)m' = -Y;g(gg - m)

(ii) m'(Xi,n) = 0

(iii) m'(Yi,1)) = 0

(iv) ii m' II < (1 - II m [I)E/2.

Define a new sequence of functions hg as

hg(x) = gg(x) + m'(x),

= gg(x),

and

if x E [a, b]\Tn

otherwise.



28 DARELL J. JOHNSON

Then hgE C[a, b], hiti) = ]Ui), (i = 1,... , u), Ilf - hgII ::( Ilf - gl; II +
II m' II ::( E/2, and

Wi *hg = Vi~n(gg + m') + Yi~ngg

= Wi *gg - ytggl; + ytgm

= vtgm + ytgm

= Wi*m

= ltVi*f, (i = 1,... , n).

In particular, then, Xi* = Wi* + Xi* 0 XT implies xi*hg = xi*f(i = 1,... , n).
Finally II hI; II ::( Ilfll = 1, for hg = gg on Tn, and II gg II ::( 1, while

on [a, b]\Tn gg = m(x), and Im(x)j ::( II m II, whence Ihg(x)I ::( II m II +
(l - II m 11)/2 < 1 whenever x E [a, b]\Tn • By Proposition C, there is apE II
for which

(i) Xi*P = xi*hg (i = 1, , n),

(ii) p(tj ) = hg(tj ) (j = 1, , u),

(iii) II p II = II hI; II, and

(iv) II hI; - p II < E/2.

Since xi*hg = xi*f(i = 1,... , n), hg(tj ) = ](t j ) (j = 1,... , u), II hg II ::( Ilfll and
Ilf - hg II ::( E/2, done. I

3. NECESSITY

Suppose z~*, ... , z~* is an arbitrary SAIN sequence on C[a, b], and set
Z = <z~*, ..., z~*). We find a different basis of Z as follows: if z~*,... , z~* is
nonextremal for C[a, b]\ll, let Zl *, ... , Zn * be n arbitrary linearly independent
elements of Z. Otherwise, let Zl* be a nonzero linear functional in Z which is
extremal with respect to C[a, b]\ll. If Z = <Zl*) ffi Zl , and the elements of
Zl are all nonextremal for C[a, b]\ll, let Z2 *,.~., Zn* be arbitrary linearly
independent elements of Zl . Otherwise let Z2* be a nonzero functional in Zl
which is extremal on C[a, b]\ll. Continuing in this manner we may find a
maximal sequence of linearly independent functionals Zl *, ... , Zr *, each of
which is extremal on C[a, b]\ll. We then let Z:+l , ••• , Zn* be arbitrary
functionals in Z such that Zl *,... , Zn * are linearly independent. By Lemma 2,
a SAIN functional is extremal on C[a, b]\ll if and only if it is finitely purely
atomic, while Z:+l , .•• , Zn* forms a SAIN sequence which is nonextremal on
era, b]\ll.
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In the previous section we considered the case when the finitely purely
atomic functionals Z1 *, ... , Zr * were point evaluations (one atom only) and
showed that one had property SAIN holding for such SAIN sequences, We
now handle the case when the Z1 *, ... , z,* may have more than one atom
apIece.

Observe first that Theorem 1 implies that the triple (C[a, b], II,
{Z1 *, ... , Zr *, Z;+1 ,... , Zn *}) has property SAIN whenever the (finitely many)
atoms of Z1*,,,,,Zr*, call them t1 ,.,.,tu , are such that the sequence
etl ,... , et,,' Z;+l ,... , Zn * is a SAIN sequence. For if g E C[a, b] and E > 0 is
arbitrary, if there must exist apE II for which

(i) p(t;) = get;) (i = 1,... , u),

(ii) Zj*P = Zj*g (j = r + 1, ... , n),

(iii) :1 p = II g II, and
(iv) I, g - p 11 < E,

then
u

z/ = L gijet;
i~1

implies

(v) Zj*P = Zj*g (j = 1,... , r)

also. Furthermore Lemma 3 and Corollary 2 show that relatively few points
of [a, b] can be such that et

1
, •.• , et

u
' z;+l ,... , Zn* is not a SAIN sequence.

Thus in a certain sense, the triple (C[a, b], II, {Zl *,... , Zn *}) will have properly
SAIN holding at least for almost all SAIN sequences.

LEMMA 11. Suppose X1*,X2*, ...,xn* is a SAIN sequence on C[a,b],
x1* purely finitely atomic and x2*, ... , xn* nonextremal on qa, b]\II. If
fE C[a, b] is such that [x1*f! < II x1* Ii, then given E > 0 there is a p Ell
for which

(') * - *f (. - 1 )1 Xi P - Xi I - , ... , n

(ii) il p Ii = 1iI11, and
(iii) U - p:1 < E.

Proof If fEll, trivial. Thus suppose fE C[a, b]\II, = 1, and
x* E (X1*'"'' Xn*)\{O}. Ifx* E (x2*, ... , Xn*)\{O}, by hypothesis i x*fi < il x* Ii.
Thus suppose x* = t1X1* + L~=2 tjXj*, with t1 eF O. Since x* is a SAIN
functional, it is either purely finitely atomic, in ±Y' with support [a, b], or
else nonextremal on C[a, b]. But x* finitely purely atomic implies L;~2 tjXj*
is also (or else is the zero functional). Since L7~2 tjXj* is nonextremal on
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C[a, b]\11, it is not purely finitely atomic. If x* E ±.gpwith support x* = [a, b],
Ix*f I = II x* II if and only if f = ± ~ E II. Thus necessarily x* must be
nonextremal on C[a, b], and hence I x*fl < II x* II. If x* E <xI *), I xl*fl <
II Xl *fll by hypothesis. Since x* E <Xl*, ... , Xn *)\{O} was arbitrary, Xl *,... , Xn *
is nonextremal for f, whence by Lemma 1 the conclusion follows. I

LEMMA 12. Suppose Xl *, ... , Xn * is a SAIN sequence on C[a, b], Xl *finitely
purely atomicandx2*, ... , Xn * nonextremal on C[a, b]\II. Suppose T = {tl ,... , tu}

is the set ofatoms ofXl *, and w/ = x/ 0 X[a,bl\T (j = 2"00' n). If W2*'00" Wn *
is nonextremal on C[a, b]\II, then given E > 0 andfE C[a, b] arbitrary, there
is apE II for which

(i) Xi*P = xi*f (i = 1'00" n),
(ii) II p II = Ilfll, and

(iii) Ilf - p II < E.

Proof Suppose that Ilfll = 1. By Lemma 1 there is an m E II for which

(i) wj*m = w/f (j = 2'00" n),
(ii) II m II < Ilfll, and

(iii) Ilf - m Ii < E/4.

Observing the proof of Theorem I closely, the fact that et "00, et ,
1 u

X 2*'00" X n * was a SAIN sequence was critical only in obtaining such an mE II
as above (the choice of Xi,T) , Yi,T) using Corollary 2 so that the sequence in (9)
is a SAIN sequence may be modified by employing Lemma 4 in place of
Corollary 2 and getting the sequence of linear functions in (9) to be linear
independent, and the linear independence of the sequence (9) was all that was
really used in the balance of the proof). Hence repeating the proof of
Theorem 1 yields the desired conclusion. I

Lemmas 11 and 12 give sufficient conditions in order that a SAIN sequence
Xl *, X2*'00" Xn * with Xl * finitely purely atomic and X2 *'00" Xn * nonextremal
on C[a, b]\II be such that the triple (C[a, b], II, {Xl *'00" Xn *}) have property
SAIN. We now show that the hypotheses for at least one ofLemmas II and 12
must be satisfied for Xl *'00" Xn * a SAIN sequence with Xl * purely finitely
atomic and X 2*, ... , X n * nonextremal.

LEMMA 13. Suppose xl*,.oo, x n * is a SAIN sequence on C[a, b], x I *
purely finitely atomic and X2 *'00" Xn * nonextremal on C[a, b]\II. Suppose
T = {tl '00" tu } = suppxl * and Wj* = Xj* 0 X[a,b]\T (j = 2,... , n). Then there
cannot exist agE C[a, b]\II and a w* E <w2*,00., Wn *)\{O} for which both

(i) I xl*g I = II XI * II11 g ii, and
(ii) I w*g I = II w* IIII gil

unless w* should also be finitely purely atomic.
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Proof Suppose not and let x* E (x2*, ... , X n *)\{O} be such that
11'* = x* 0 X[a.b]IT' Then x* = 11'* + L:~~1 (Xieti for some (X = (':Xi) E [Ru.

By hypothesis (ii) g E C[a, b]\,1I must be such that

g(X) = I,

= -1,

if x E supp w'*,

if x E supp 11'-*.

In particular g continuous requires that supp 11'+* n supp W-* = '2\, and
g =i= ~ requires then that supp 11'* =i= [a, b]. But x* must be a SAIN functional
(since Xl *, x* is a SAIN sequence) and so Lemma 2 requires that
either x* is finitely purely atomic, has support [a, b), or else that
supp x+* n supp x-* =i= 0. x* being finitely purely atomic implies w* is
also, and likewise supp x* = [a, b) implies supp w* = [a, b], neither of
which are true. Hence supp x+* n supp x-* =i= 0.

Suppose that Xl * = L:~~1 f3iet and that T = {t1 , ... , t,,} is such that
t; E supp x+* (i = 1, ... , s), t; E supp x-* (i = S + 1, ... , Sf), and t; rt supp x*
(i = Sf + 1, ... , u), 0 ~ S ~ Sf ~ u with either s ;?o lor Sf ;?o S + 1 (er both).
Let y = maxt (Xi 1/1 f3i ;; i = 1,..., Sf} and consider the functional z* =

x* + yx1 *. Since hypothesis (i) requires that

g(tJ = 1,

= -1,

if 1 ~ i ~ s

if S + 1 ~ i ,s;; Sf,

we observe that z* is neither finitely purely atomic, does not have support
[a, b], and that supp z+* n supp r* = 0 (for z* = x* -;- YXI * = 11'* +
L::~1 «Xi + yf3i) et . + L:~~S'-L1 «X; + yf3i) et and we observe that (Xi -i-- yf3i ;?o 0
if 1 ,s;; i ,s;; s, while (Xi + ;f3i ,s;; 0 if s +'1 ~ i ~ Sf). Hence z* is a non
SAIN linear functional, contradicting the assumption that Xl *, ... , X n * is a
SAIN sequence on C[a, b]. I

Remark 2. If Xl *,... , X r *, X:+1 , ... , X n * is a SAIN sequence with
Xl *, ... , X r * finitely purely atomic and X~,l , ... , X n * nonextremal on C[a, b]\lI,
and iffE C[a, b], lin = 1 is such that i xi*f; = 11 x;* II for each i = 1,... , r,
it is possible to replace x 1 *, ... , x,* by a z·t such that given ap Ell, I:pl ~ 1,
Xi*P = x/'''fU = 1, ... , n) if and only if z*p = z*f Moreover this z* will be
such that I z~fl = ,I z* Thus without loss of generality we may suppose
that for a given fE C[a, b], Ilfll = 1, that I x*fl < II x* I for every
x* E (x2*, ... , x,*)\{O}.

Remark 3. Actually it is possible to improve on Remark 2 by following
a procedure similar to that in obtaining the Zl *, ... , Zn * from the z~*,... , z~*
specified at the beginning of this section. For, if fE C[a, b]\lI, = 1 is
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arbitrary, let Zl * EO X = <Xl*,... , X n *)\{O} be such that [Zl*f I = [I Zl * [I (if
such exist), Z2 * EO X so that. Zl* and Z2 * are linearly independent and
I Z2*f I = II Z2 * 11, ..• , Zr * EO X so that Zl *, ... , Zr * are linearly independent and
1 z,*f I = I[ Zr * II· We then find a 0 :(; r :(; n so that the sequence of
Zl *, , Zr * is maximal (i.e., so that Z:+l , ... , Zn * is nonextremal for f if
Zl *, , Zr *, Z:+l , ... , Zn * are linearly independent elements and a basis for X).
By Remark 2, it is possible to replace Zl *, ... , Zr * by an equivalent (sense
specified in Remark 2) extremal finitely purely atomic functional z*, and
we find ourselves considering the case dealt with in Lemmas 11-13. Thus
given an f EO C[a, b] and E > 0 arbitrary it is possible to conclude whether
there exist p EO II for which (i) Xi*P = xi*f(i = 1,... , n), (ii) [I p II = Ilfll, and
(iii) Ilf - p II < E on the basis of the linear functionals Xl*,... , X n * alone, a
sufficient condition being that Xl *, ... , X n * form a SAIN sequence on C[a, b].
In other words we have shown that:

THEOREM 2. The triple (C[a, b], II, {Xl*, ... , X n *}) has property SAIN if
and only if the sequence x l *, ... , X n * is a SAIN sequence.

4. SOME EXAMPLES

EXAMPLE 4.1.

1/2

X 2* = f .dx - el /4 ,
o

J
g /4

X g* = 3e1l4 - 2e1l8 - • dx.
o

Here x l *, x2*, x g* is not a SAIN sequence on C[O,l], since
2xl * + X 2* + Xg* = 2e1l4 - f~~: .dx is not a SAIN functional. Hence
(C[O, 1], II, {xl *, x 2*, x g*}) does not have property SAIN.

EXAMPLE 4.2.
1

Xl* = r. .dx - e1l4 - e 5/8 ,
• 0

1/2

X 2* = { . dx - el/g •

Here x l *, x 2* is a SAIN sequence which is nonextremal on e[O, 1]. Hence
property SAIN holds.
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rationals in [3/4, 1].
Here Xl *, X 2* is a SAIN sequence, Xl* is finitely purely atomic with atoms

1/4, 1/2, and el/4 , el / 2 , X 2* is also a SAIN sequence. Since X 2* is non
extremal, property SAIN holds.

EXAMPLE 4.4.

Here x l *, x 2* is a SAIN sequence, x I * is finitely purely atomic with atoms
1/4, 1/2, 3/4; x 2* is nonextremal, and el / 4 , el/2, es/4 , x 2* is not a SAIN
sequence (x 2* - el/2 - eS /4 + el / 4 = f~/2 • dx is not a SAIN functional). On
the other hand, if g E C[a, b), II g II = 1 is such that I Xl *g [= Xl * then
(wlog) g(l/2) = g(3/4) = 1, g(l/4) = -1, whence I w*g [ < 1.11'*1, where

1/2
w* = fo . dx. Hence property SAIN holds.

5. GENERALIZATIONS?

The characterizations obtained in Sections 2 and 3 and summarized as
Theorem 2 in Section 3 assume that the dense subspace M of C[a, b] is the
polynomials II. Actually this is somewhat stronger an assumption than
necessary. For example, if M should be any dense subalgebra (containing the
constants) of the polynomials II, identically the same characterizations as
given in Theorem 2 hold. In fact, if M is any dense subalgebra of C[a, b)
for which the SAIN functionals with respect to M are the same as those with
respect to II, the same conclusion may be true (is true if in addition any
In EM can attain its norm only finitely often).

For more general dense subspaces of C[a, b], the characterizations anal
ogous to Theorem 2 appear to vary to some extent. One underlying reason
is that the SAIN functionals with respect to different dense subspaces can
differ to some extent (e.g., consider the SAIN functionais of a dense sub
algebra not containing the constant functions. Type ii (positive or negative
linear functionals with support [a, b)) are no longer SAIN functionals then).
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A special example of dense subalgebras M that we can immediately give
characterizations analogous to Theorem 2 are the subspaces of the form:

M = M(D) = {IE C[a, b];jcoincides with a polynomial

in each connected component of [a, b]\D}, (12)

where D is a finite union of subintervals of [a, b]. Moreover, considering
such subspaces M as in (12) is equivalent to considering the underlying
function space to be C(T), where T is a disjoint union of compact intervals
and M is the direct sum of the spaces of polynomials on each component of T.

For all these special cases, the corresponding characterizations seem to
possess underlying similarities to those when M = II (in particular, every
SAIN sequence seems to be such that property SAIN holds). Perhaps a
closer examination and determination of these similarities would allow one
to produce characterizations of property SAIN for more dense subalgebras
(and subspaces).

It should be noted that although the use of an interval was fundamental
to the proof, the type of characterizations obtained ought also to be valued
for more general function spaces C(T), T not one-dimensional.

REFERENCES

1. F. DEUTSCH AND P. D. MORRIS, On simultaneous approximation and interpolation
which preserves the norm, Bull. Amer. Math. Soc. 75 (1969), 812-814.

2. F. DEUTSCH AND P. D. MORRIS, On simultaneous approximation and interpolation
which preserves the norm, J. Approximation Theory 2 (1969), 355-373.

3. F. DEUTSCH AND P. D. MORRIS, Simultaneous approximation and interpolation with
preservation of norm, in "Approximation Theory," (A. Talbot, Ed.), pp. 309-313.
Academic Press, New York, 1970.

4. DUNFORD AND SCHWARTZ, "Linear Operators. Part I," Interscience, New York, 1958.
5. R. HOLMES AND J. LAMBERT, A geometrical approach to property (SAIN), J. Approxima

tion Theory 7 (1973), 132-142.
6. D. J. JOHNSON, Jackson type theorems for approximation with side conditions, J.

Approximation Theory 12 (1974), 213-229.
7. D. J. JOHNSON, One-sided approximation with side conditions, to appear.
8. J. LAMBERT, Simultaneous approximation and interpolation in /1' Proc. Amer. Math.

Soc. 32 (1972), 150-152.
9. J. LAMBERT, Simultaneous approximation and interpolation in L 1 and C(T), Pacific

J. Math. 45 (1973), 293-296.
10. H. W. McLAUGHLIN AND P. M. ZARETZKI, Simultaneous approximation and inter

polation with norm preservation, J. Approximation Theory 4 (1971), 54-58.
11. H. L. ROYDEN, "Real Analysis," Macmillian, New York, 1963.
12. V. A. SMATKOV, On simultaneous approximation and interpolation in Banach spaces,

Dokl. Akad. Nauk Armyanskoi SSR LUI (1971),65-70.
13. H. YAMABE, On an extension of the Helly's theorem, Osaka Math. J. 2 (1950), 15-17.


